Кафедра математики. Готовимся к выполнению контрольной, курсовой работы Готовимся к выполнению контрольной, курсовой работы

Производная произведения и частного функций

Вычислить производную y(x)=tg x используя формулу производного частного.

Производные шести тригонометрических функций и, соответственно, шести обратных тригонометрических функций определяются следующими формулами (рядом указана область определения каждой функции)

Продифференцировать функцию .

Вывести формулу для производной арксинуса.

 

Производная произведения функций. Пусть u(x) и u(x) - дифференцируемые функции. Тогда произведение функций u(x)v(x) также дифференцируемо и Внимание: Производная произведения двух функций НЕ РАВНА произведению производных этих функций! Производная частного функций. Пусть u(x) и u(x) - дифференцируемые функции. Тогда, если v(x) ≠ 0, то производная частного этих функций вычисляется по формуле

Пример Найти производную функции .

Решение. Используем правило для вычисления производной частного.

Пример Найти производную cтепенной функции с отрицательным показателем .

Решение. Запишем функцию в виде и воспользуемся формулой для производной частного. Получаем

Таким образом, можно сказать, что объем цилиндрического тела, ограниченного плоскостью Oxy, поверхностью  и цилиндрической поверхностью с образующей, параллельной оси Oz, выражается двойным интегралом от функции , взятым по области, являющейся основанием цилиндрического тела:

.

Аналогично теореме существования обыкновенного интеграла имеет место следующая теорема.

Теорема существования двойного интеграла.

Если функция непрерывна в области D, ограниченной замкнутой линией, то её n-я интегральная сумма стремится к пределу при стремлении к нулю наибольшего диаметра частичных областей. Этот предел, т.е. двойной интеграл , не зависит от способа разбиения области D на частичные области и от выбора в них точек Pi.

Двойной интеграл, разумеется, представляет собой число, зависящее только от подынтегральной функции и области интегрирования и вовсе не зависящее от обозначений переменных интегрирования, так что, например,

.

Далее мы убедимся а том, что вычисление двойного интеграла может быть произведено посредством двух обыкновенных интегрирований.

Величины r1 и r2 в формулах (2) при уменьшении Dx в k раз уменьшаются более чем в k раз, что можно видеть, сравнивая рисунки 3 и 4, и говорят, что r1 и r2 стремятся к нулю быстрее, чем Dx .

Назовем функцию b (z) бесконечно малой в точке z = z0, если .

Пусть функции b (z) и g (z) являются бесконечно малыми в точке z = z0.. Функция b (z) называется бесконечно малой более высокого порядка, чем функция g (z), если .

Величины r1 и r2 в формулах (2) являются функциями аргумента Dx, бесконечно малыми в точке Dx = 0. Можно показать, что. Это означает, что функции r1(Dx) и r2(Dx) являются бесконечно малыми функциями более высокого порядка, чем Dx, в точке Dx = 0.

Таким образом приращение функции y = f(x) в точке, в которой существует её производная, может быть представлено в виде

 Dy = f¢(x) Dx +b (Dx),

где b (Dx) ‑ бесконечно малая функция более высокого порядка, чем Dx, в точке Dx = 0.


На главную