Кафедра математики. Готовимся к выполнению контрольной, курсовой работы Готовимся к выполнению контрольной, курсовой работы

Производная степенной функции

Если f(x) = xp, где p - действительное число, то

Если показатель степени является отрицательным числом, т.е. f(x) = x−p, то Производная полинома. Пусть . Тогда где an, an − 1,…, a1, a0, n − постоянные величины. В частности, для квадратичной функции где a, b, c − постоянные коэффициенты. Производная иррациональной функции. Если , то В частности, если , то

Пример Вычислить производную функции .

Решение. Применим правило суммы, Вынесем постоянные множители за знак производной Найдем производные степенных функций Окончательно получаем

Нахождение производной функции y = f(x) называется дифференцированием.

  Если для любого числа x из открытого промежутка (a, b) можно вычислить f¢(x), то функция f(x) называется дифференцируемой на промежутке (a, b).

Геометрический смысл производной заключается в том, что произ­водная функции f(x) в точке x равна тангенсу угла наклона касательной к графику функции в этой точке.

Производная  это скорость изменения функции в точке x. Из определения производной следует, что f¢ (x) » Df / Dx, причем точность этого приближенного равенства тем выше, чем меньше Dx. Производная f¢ (x) является приближенным коэффициентом пропорциональности между Df и Dx.

Производная функции f(x) не существует в тех точках, в которых функция не является непрерывной. В то же время функция может быть непрерывной в точке x0, но не иметь в этой точке производной. Такую точку назовём угловой точкой графика функции или точкой излома. Графические примеры приведены на рисунке 2.

 

Так функция y = êê не имеет производной в точке x = 0, хотя является непрерывной в этой точке.

Ниже приводится таблица производных элементарных функций.

f(x)

f(x)

f(x)

C

0

cosx

-sinx

x

1

lnx

1/x

tgx

1/cos2x

xn

nxn-1

ax

axlna

arcsina

1/(2)

arccosa

-

1/x

-1 / x2

sinx

cosx

arctgx

1/(1+x2)


На главную