Кафедра математики. Готовимся к выполнению контрольной, курсовой работы Готовимся к выполнению контрольной, курсовой работы

Определение производной

Пример Найти производную функции .

Решение. Применяя определение производной, получаем Умножим числитель и знаменатель на . Заметим, что Тогда

Пример Найти производную функции y(x) = sin x.

Решение. Используя определение производной, получаем Применим тригонометрическое тождество Тогда Первый предел в данном выражении равен Поскольку , то для производной синуса получаем окончательное выражение:

 Вернемся теперь к интегралу от элементарной дроби вида IV в общем случае.

В полученном равенстве первый интеграл с помощью подстановки t = u2 + s приводится к табличному , а ко второму интегралу применяется рассмотренная выше рекуррентная формула.

 Несмотря на кажущуюся сложность интегрирования элементарной дроби вида IV, на практике его достаточно легко применять для дробей с небольшой степенью n, а универсальность и общность подхода делает возможным очень простую реализацию этого метода на ЭВМ.

Неопределенный интеграл.

Функция F(x) называется первообразной для функции f(x) на промежутке (a;b), если для всех xÎ(a;b) выполняется равенство F¢(x) = f(x).

Например, для функции x2 первообразной будет функция x3/3.

Если для F(x) установлено равенство dF(x) = f(x)dx, то F(x) ¾ первообразная для f(x), так как .

Рассмотрим две теоремы, которые называются теоремами об общем виде всех первообразных данной функции.

Теорема 1. Если F(x) – первообразная для f(x) на (a;b), то F(x) + C, где C – число, тоже первообразная для f(x) на (a;b).

Доказательство.

  (F + C)¢ = F¢ + C¢ = f + 0 =  f

По определению F + C ¾ первообразная для f.

Прежде чем рассмотреть теорему 2, докажем две вспомогательные теоремы.

Если функция g(x) постоянна на (a;b), то g¢(x) = 0.

Доказательство.

Так как g(x) = C, справедливы равенства: g¢(x) = C¢ = 0 (здесь, как и ниже, через C обозначено произвольно выбранное число).

Если g¢(x) = 0 при всех xÎ(a;b), то g(x) = C на (a;b).

Доказательство.

Пусть g¢(x) = 0 во всех точках (a;b). Зафиксируем точку x1Î(a;b). Тогда для любой точки xÎ(a;b) по формуле Лагранжа имеем

 g(x) – g(x1) = g¢(x)(x – x1)

Так как xÎ(x; x1), а точки x и x1 принадлежат промежутку (a;b), то g¢(x) = 0, откуда следует, что g(x) – g(x1)=0, то есть g(x) = g(x1)=const.


На главную