Кафедра математики. Готовимся к выполнению контрольной, курсовой работы Готовимся к выполнению контрольной, курсовой работы

Физические приложения поверхностных интегралов

Сила притяжения между поверхностью S и точечным телом m определяется выражением

Найти массу цилиндрической оболочки, заданной параметрически в виде , где

Найти массу параболической оболочки, заданной уравнением и имеющей плотность .

Найти центр масс части сферической оболочки , расположенной в первом октанте и имеющей постоянную плотность μ0.

Вычислить момент инерции однородной сферической оболочки x2 + y2 + z2 = 1 (z ≥ 0) с плотностью μ0 относительно оси Oz.

Найти силу притяжения между полусферой с постоянной плотностью μ0 радиусом r с центром в начале координат и точечной массой m, расположенной в начале координат.

Оценить силу давления, действующую на дамбу, схематически показанную на рисунке 6 и представляющую собой резервуар воды шириной W и высотой H.

Поверхностные интегралы применяются во многих прикладных расчетах. В частности, с их помощью вычисляются

Масса оболочки Пусть S представляет собой тонкую гладкую оболочку. Распределение массы оболочки описывается функцией плотности . Тогда полная масса оболочки выражается через поверхностный интеграл первого рода по формуле Центр масс и моменты инерции оболочки Пусть распределение массы m в тонкой оболочке описывается непрерывной функцией плотности . Координаты центра масс оболочки определяются формулами где − так называемые моменты первого порядка относительно координатных плоскостей x = 0, y = 0 и z = 0, соответственно. Моменты инерции оболочки относительно осей Ox, Oy, Oz выражаются, соответственно, формулами Моменты инерции оболочки относительно плоскостей xy, yz, xz определяются формулами Сила притяжения поверхности Пусть задана поверхность S, а в точке (x0, y0, z0), не принадлежащей поверхности, находится тело массой m (рисунок 1).
Рис.1
Рис.2

Опр. Векторная функция каждой точке пространства ставит в соответствие неко­торый вектор (Rx,Ry,Rz) – в 3-х мерном пространстве, (Rx,Ry)- в двух мерном.

Пусть Rx=0,Ry=0,тогда получим поле вида

 


Рассмотрим поток не сжимаемой жидкости с плотностью ρ=1

пусть есть поверхностная функция R(x,y,z)=(P,Q,R) сколько жидкости вытекает через поверхность в направлении Z/.

 if 

суммы Дарбу.

На главную