Кафедра математики. Готовимся к выполнению контрольной, курсовой работы Готовимся к выполнению контрольной, курсовой работы

Физические приложения двойных интегралов

Определить координаты центра тяжести однородной пластины, образованной параболами и .

Вычислить моменты инерции треугольника, ограниченного прямыми и имеющего плотность .

Масса и статические моменты пластины Предположим, что плоская пластина изготовлена из неоднородного материала и занимает область R в плоскости Oxy. Пусть плотность пластины в точке (x, y) в области R равна . Тогда масса пластины выражается через двойной интеграл в виде Статический момент пластины относительно оси Ox определяется формулой Аналогично находится статический момент пластины относительно оси Oy : Координаты центра масс пластины, занимающей область R в плоскости Oxy с плотностью, распределенной по закону , описываются формулами Для однородной пластины с плотностью для всех (x, y) в области R центр масс определяется только формой области и называется центроидом. Моменты инерции пластины Момент инерции пластины относительно оси Ox выражается формулой Аналогично вычисляется момент инерции пластины относительно оси Oy : Полярный момент инерции пластины равен Заряд пластины Предположим, что электрический заряд распределен по области R в плоскости Oxy и его плотность распределения задана функцией . Тогда полный заряд пластины Q определяется выражением Среднее значение функции Приведем также формулу дял расчета среднего значения некоторой распределенной величины. Пусть f (x,y) является непрерывной функцией в замкнутой области R в плоскости Oxy. Среднее значение функции μ функции f (x,y) в области R определяется формулой

где − площадь области интегрирования R.

  Если поверхность ограниченная, гладкая, полная, не имеет особых точек, эта поверхность задана параметрически x=x(U,V), y=y(U,V), z=z(U,V)

  В этом случае такая поверхность заведомо квадрируема и площадь этой поверхности равна 

  

  По определению  поверхности кусочков касательных плоскостей

 

если поверхность является гладкой, возьмем две нормали, находящиеся рядом, направляющие cos этих нормалей должны меняться гладко 

На главную