Факультет электротехники. Теория электрических цепей Факультет электротехники

Резонансные явления в цепях с несинусоидальными источниками

Рассматривая однофазные синусоидальные цепи, мы познакомились с явлением резонанса. Указанные явления имеют место в цепях и с несинусоидальными источниками, однако, в этом случае они имеют определенную специфику, связанную с тем обстоятельством, что резонанс может возникнуть как на основной, так и на высших гармониках.

Для последовательного контура в цепях с несинусоидальным источником условие резонанса будет задано соотношением

 ,

где ω - частота основной гармоники; k – номер гармоники.

Мощность периодических несинусоидальных токов Для определения активной мощности, выделяемой на активных элементах, воспользуемся формулой мгновенной мощности p = iu, где i и u заданы рядом Фурье.

Несинусоидальные функции времени с периодической огибающей В отличие от периодических функций, рассмотренных выше, существуют несинусоидальные кривые с периодическими или почти периодическими огибающими.

Модуляция Синусоидальные колебания характеризуются тремя основными параметрами: амплитудой, частотой и начальной фазой.

Для определения функции выходного напряжения составим передаточную функцию исходной цепи, которая связывает входное и выходное напряжения и является частотно-зависимой:

Высшие гармоники в трехфазных цепях.

Высшие гармоники при соединении фаз источника и приемника звездой В линейных напряжениях, определяемых как разность соответствующих фазных напряжений, гармоники напряжений, кратные трем, отсутствуют.

На рис. 7.6 приведена зависимость, иллюстрирующая данное явление.

Рис.7.6. Зависимость тока от индуктивности

.

 

Методика расчета цепей с несинусоидальными источниками

1. Заданную несинусоидальную функцию, питающую цепь, раскладывают в ряд Фурье и ограничиваются при этом тремя - четырьмя членами ряда, включая постоянную составляющую, если она есть.

2. Любым из известных методов расчета сложных электрических цепей производится расчет токов и напряжений заданной цепи. При этом используется комплексный метод расчета. Эта процедура выполняется для всех гармоник ряда, включая и постоянную составляющую, которая эквивалентна цепи с постоянным током.

Комплексное решение, полученное на каждой из гармоник складывать нельзя, с целью получения обобщенного решения задачи. Эту процедуру мешает выполнить то обстоятельство, что соответствующие полученным решениям векторы будут вращаться с различными угловыми частотами. Поэтому полученные комплексные решения должны быть переведены в реальные функции времени и лишь затем просуммированы, основываясь на принципе наложения.

Сказанное проиллюстрируем примером по рис. 7.7.

 

 a) b)

Рис.7.7. Форма подаваемого напряжения (a)
и схема исследуемой цепи (b)

Uвх = 100В - действующее значение (для первой гармоники), XL = 25 Ом, XC = 100 Ом, R = 50 Ом.

Определить действующее напряжение на выходе, ограничиваясь первыми тремя членами ряда, на который можно разложить функцию uвх(ωt).

Используя известное разложение, получим

;

;

.


На главную