Факультет электротехники. Теория электрических цепей Факультет электротехники

Несинусоидальные токи

Расчет электрических цепей, выполненный ранее, проводился в предположении, что источники энергии были либо постоянными, либо синусоидальными и вызывали в элементах цепей постоянные или синусоидальные токи. В реальных условиях кривые ЭДС, напряжения и тока лишь в определенной мере могут считаться синусоидальными, при этом указанные параметры цепей могут иметь характер периодический, квазипериодический (почти периодический) и непериодический. Это происходит за счет наличия в электрических цепях нелинейных элементов: вентиль (диод), электрическая дуга, катушка со стальным сердечником (дроссель), различного рода электрические помехи и т.д., которые искажают синусоидальную функцию, приводя к появлению несинусоидальных функций токов и напряжений, кроме того, сам источник энергии может являться генератором несинусоидальной ЭДС. На рис. 7.1 представлены варианты данных функций.

Рис.7.1. Пример несинусоидальных периодических функций

Воздушный трансформатор является классическим примером линейной цепи, имеющей индуктивную связь.

Индуктивные элементы (L1 - M) и (L2 - M) замещают в реальном трансформаторе индуктивности потокорассеяния при условии, что количество витков катушек равны(n = 1).

Вносимое сопротивление трансформатора Пусть к выходным зажимам трансформатора по рис. 6.17 подключен приемник с сопротивлением Zн.

Выражения для коэффициентов ряда позволяют получить разложение в ряд любой периодической функции, однако для большинства таких функций, которые используются в теории электрических цепей, эти разложения уже получены и могут быть взяты в соответствующей справочной литературе.

Амплитудное, среднее и действующее значения периодических несинусоидальных функций.

Аналогично определяются действующие значения несинусоидального напряжения и любой другой функции, изменяющейся по несинусоидальному периодическому закону.

Разложение периодической функции в тригонометрический ряд

Во всех задачах, где приходится иметь дело с периодическими несинусоидальными функциями токов, ЭДС и напряжений, необходимо свести их к более простому виду, для которого возможно применение известных методов расчета. Процессы, происходящие в линейных электрических цепях при несинусоидальных токах и напряжениях, удобнее всего рассчитывать, если воспользоваться тригонометрическим рядом Фурье. В общем случае выражение этого ряда имеет вид

f(ωt) = A0 + A1msin(ωt+ψ1) + A2msin(2ωt + ψ2) + … 138(7.1)

Первое слагаемое носит название нулевой гармоники или постоянной составляющей ряда, где k - номер гармоники, при k = 0 ψk = π/2, Akm = A0 - нулевая гармоника. Она присутствует в составе ряда не всегда. Если функция симметрична относительно оси времени, то нулевой гармоники нет.

Второе слагаемое - это первая или основная гармоника ряда, задает основной период T = 2π/ω.

Все остальные слагаемые носят название высших гармоник ряда. Период каждой из них кратен периоду основной гармоники. Сделаем преобразование ряда, раскрыв синус суммы,

 . 139(7.2)

 ;

 ;   . 

Коэффициенты ряда определяются по следующим формулам:

 ; 140(7.3)

.


На главную