Математика, физика, расчет электрических цепей Машиностроительное черчение, информатика

Физика
Учебный лабораторный комплекс
Взаимодействия ядра с электронной оболочкой атома
Практикум по физике Лабораторные работы
Волны оптика Атомная физика
Мессбауэровский спектрометр
Электрический заряд. Закон сохранения заряда.
Теорема Гаусса
Общие преобразования Лоренца
Конденсаторы
Сопротивление, законы Ома и Джоуля-Ленца
Поле системы зарядов
Количество ядер атомов кремния
Потенциал электрического поля
Теории сильного взаимодействия элементарных частиц
Детекторы идентификации частиц
Ядерный модификационный фактор
Квантовая хромодинамика
Ядерная фотоэмульсия
Механизм образования следов
Нейтронная
Электрическое поле в металлах и диэлектриках
Электрическая емкость. Конденсаторы
Постоянный ток Сила и плотность тока
Закон Ома для однородного участка цепи
Закон Ома для однородного участка цепи
Электрический ток в различных средах
Магнитное поле, колебания, волны
Статистический и термодинамический методы
Электротехника
Законы Ома и Кирхгофа для цепей постоянного тока
Трехфазные трансформаторы
Двигатели постоянного тока
Исследование генератора постоянного тока
Анализ цепей синусоидального тока
Нелинейные цепи переменного тока
Электронные приборы и устройства
Однофазные выпрямители
Расчёты в трёхфазных цепях
Переходные процессы в RLC цепях
Информатика
Операционная система Linux
История абстрактного искусства
  • Беспредметное искусство
  • Абстрактное искусство в России
  • Византийская эстетика
  • Историческое развитие
    абстрактного метода в живописи
  • Истоки и развитие абстрактного
    искусства в России первой
    половины ХХ века
  • Структура абстрактного произведения
  • Абстрактная живопись в России
    в послевоенный период
  • Основные этапы развития
    послевоенного абстрактного искусства
  • Символическая тенденция 
    в абстрактном искусстве
  • Геометрическая тенденция 
    в послевоенном абстрактном искусстве
  • Американский абстрактный
    экспрессионизм
  • Стиль Артдеко
  • Фовизм
  • Матисс
  • Конструктивная живопись
  • Мозаики и фрески
  • Высшая математика - лекции, курсовые, типовые задания, примеры решения задач

    Математический анализ наряду с «Линейной алгеброй и аналитической геометрией» является базовым для изучения на втором и последующих курсах таких дисциплин, как «Дифференциальные уравнения», «Численные методы», «Уравнения математической физики», «Дополнительные главы анализа», «Функциональный анализ» и ряда других.

    ФункцииПонятие функции является одним из самых важных понятий в математике и её приложениях. В курсе математического анализа будут сначала изучаться только действительные функции одного действительного аргумента

    Предел функции по Коши Второе определение предела функции Существует другое определение предела функции, не использующее понятие предела последовательности, а формулируемое в терминах окрестностей и называемое определением предела функции по Коши.

    Точки разрыва функции и их классификация Пусть функция f определена в некоторой окрестности точки x0, кроме, быть может, самой этой точки. Точка x0 называется точкой разрыва функции f, если функция f не определена в точке x0 или если она определена в этой точке, но не является в ней непрерывной.

    Производная функции Вычисление производной от функции называется дифференцированием. Примеры. Вычислить производную функции. Связь между дифференцируемостью и существованием производной функции

    Аналитическая геометрия в пространстве Типовые расчеты (курсовые задания)

    Правила вычисления производных Пример. Вычислить производную функций .

    Вычислить двойной интеграл

    Табличные интегралы Операция нахождения неопределённого интеграла от данной функции, называемая интегрированием, является действием, обратным дифференцированию, т. е. операции нахождения по данной функции её производной.

    Исследование поведения функции Признак монотонности функции Для того чтобы непрерывная на некотором промежутке функция, дифференцируемая во всех его внутренних точках, возрастала (убывала) на этом промежутке, необходимо и достаточно, чтобы производная функции была во всех внутренних точках промежутка неотрицательна (неположительна).

    Интегралы примеры решения задач.

     

    Интегралы методы вычислений примеры

    Линейная алгебра и аналитическая геометрия Алгоритм вычисления обратной матрицы

    Понятие обратной и сложной функции Числовая последовательность и ее предел Экономический смысл производной

    Схема вычисления производной Правила дифференцирования функции. Наибольшее и наименьшее значение функции на интервале Нахождение неопределенного интеграла методом подстановки

    Линейные однородные дифференциальные уравнения . Решение в матричной форме Найти интервалы выпуклости и точки перегиба функции Вычислить предел с использованием правила Лопиталя

    Формы представления комплексных чисел Алгебраическая форма

    Несобственные интегралы

    Некоторые приложения определенного интеграла Вычисление площади плоской фигуры

    Курс лекций по ТФКП теория функции комплексного переменного Функции комплексного переменного Рассмотрим две области: Пусть известен закон, позволяющий по известным координатам некоторой точки из области D получить координаты точки в области Е. Если такой закон известен, то говорят, что задано отображение области D на область Е.

    Решение задач типового задания из учебника Кузнецова

    Линейные дифференциальные уравнения первого порядка Линейными дифференциальными уравнениями первого порядка называются уравнения, линейные относительно неизвестной функции и её производной.

    Уравнение  Бернулли

    Числовые ряды Если каждому натуральному числу  поставлено в соответствие некоторое вполне определенное число , то говорят, что задана числовая последовательность.

    Интегральный признак Коши

    Исследование знакочередующегося ряда на сходимость начинают с проверки на абсолютную сходимость. Если ряд, составленный из модулей членов ряда, расходится, применяют признак Лейбница.

    Степенные ряды

    Методы разложения функций в ряд Тейлора Если для какой-нибудь функции формально написан ряд Тейлора, то чтобы доказать, что написанный ряд представляет данную функцию нужно, либо доказать, что остаточный член стремится к нулю, либо каким-нибудь иным способом убедиться, что данный ряд сходится к данной функции.

      Основные свойства неопределенного интеграла

    Решение типового варианта контрольной работы

    Физика примеры решения задач

    • Теория атома водорода по Бору Постулаты, выдвинутые Бором, позволили рассчитать спектр атома водорода и водородоподобных систем - систем, состоящих из ядра с зарядом Ze и одного электрона (например, ионы Не+, Li2+), а также теоретически вычислить постоянную Ридберга.
    • Квантовый гармонический осциллятор Линейный гармонический осциллятор — система, совершающая движение под действием ква­зиупругой силы. Осциллятор называют одномерным, если система, например частица, может двигаться только вдоль одной прямой. Задача об уровнях энергии одномерного гармонического осциллятора является одной из наиболее важных задач о собственных значениях.
    • Принцип Паули. Заполнение электронных оболочек в атоме Опыт показывает, что по мере увеличения порядкового номера Z атома происходит последовательное строго определенное заполнение электронных уровней атома. Объяснение такого порядка заполнения уровней нашел Паули (1940). Это открытие названо впоследствии принципом Паули: в любом квантовом состоянии может находиться не более одного электрона. Поэтому каждый следующий электрон невозбужденного атома должен занимать самый глубокий из еще незаполненных уровней. Тщательная проверка явилась подтверждением принципа Паули. Другими словами, в атоме (и в любой квантовой системе) не может быть электронов с одинаковыми значениями всех четырех квантовых чисел. Именно принцип Паули объяснил, почему электроны в атомах оказываются не все на самом нижнем дозволенном энергетическом уровне.
    • Атом во внешнем магнитном поле. Эффект Зеемана Расщепление в магнитном поле энергетических уравнений атомов, приводящее к расщеплению спектральных линий в спектрах, называют эффектом Зеемана. Различают эффект Зеемана: нормальный (простой), когда каждая линия расщепляется на три компонента, и аномальный (сложный), когда каждая линия расщепляется на большее, чем три, число компонентов. Эффект Зеемана характерен для атомов парамагнетиков, так как только эти атомы обладают отличным от нуля магнитным моментом и могут взаимодействовать с внешним магнитным полем.
    • Разрешенные и запрещенные электронные энергетические зоны в кристаллах Рассмотрим мысленно «процесс образования» твердого тела из изолированных атомов одного типа. Энергетические уровни какого-либо валентного электрона в одном изолированном атоме представлены на схематическом рис. 14.7 а. Для простоты будем считать их простыми, т. е. невырожденными. Рассмотрим теперь N тождественных атомов, удаленных друг от друга настолько далеко, что их взаимодействием можно полностью пренебречь.
    • Фотопроводимость полупроводников. Экситоны Увеличение электропроводности полупроводников может быть обусловлено не только тепловым возбуждением носителей тока, но и под действием электромагнитного излучения. В таком случае говорят о фотопроводимости полупроводников. Фотопроводимость полупроводников может быть связана со свойствами как основного вещества, так и содержащихся в нем примесей.
    • Масса и энергия связи ядра Измерения показывают, что масса любого ядра mя всегда меньше суммы масс входящих в его состав протонов и нейтронов: mя < Zmp + Nmn. Это обусловлено тем, что при объединении нуклонов в ядро выделяется энергия связи нуклонов друг с другом.
    • Деление ядер Реакция деления ядра Реакция деления ядра происходит при облучении тяжелого ядра нейтронами, при этом ядро делится на несколько более легких ядер (осколков), чаще всего на два ядра, близких по массе. Деление тяжелых ядер может быть вызвано не только нейтронами, но и протонами, дейтронами, α-частицами, а также γ-фотонами
    • Электрическое поле Давно известны экспериментальные факты, указывающие на особый вид взаимодействия между телами, обладающими особыми свойствами. Во-первых, такие тела взаимодействуют как с силами притяжения, так и с силами отталкивания, во-вторых, величина силы взаимодействия убывает обратно пропорционально квадрату расстояния между центрами взаимодействующих тел. Особое свойство, определяющее такой характер взаимодействия было названо электрическим зарядом, а для удобства описания взаимодействия было введено понятие электрического поля – особого вида материи, по средствам которого взаимодействуют заряды. Сила взаимодействия зарядов определяется экспериментальным законом Кулона.
    • Токи смещения и уравнения Максвелла Для стационарных токов проводимости конденсатор является разрывом в цепи, так как силовые линии электрического поля начинаются и заканчиваются на зарядах. Возникает вопрос: каким образом происходит зарядка конденсатора? Если линии напряженности прерываются, а перенос заряда все-таки происходит, значит, между пластинами конденсатора должны существовать токи смещения . Таким образом, в контуре могут существовать как токи проводимости , так и токи смещения: .
    • Скорость характеризует быстроту движения точки. В процессе движения скорость может меняться. Мгновенная скорость – скорость точки в данный момент времени.
    • Движение тела под действием силы тяжести. Одним из видов равнопеременного движения является движение под действием силы тяжести, которое, независимо от направления движения, происходит с одним и тем же ускорением , направленным вертикально вниз. Для описания этого движения выбирают прямоугольную систему координат и применяют уравнения равнопеременного движения.
    • Квантовая гипотеза Планка День рождения квантовых представлений – 14.12.1900. Предварительные результаты были доложены немного раньше – 19 октября 1900 г., когда была доложена работа, в которой выведена новая формула для излучения. Эта работа была опубликована в 1901 г. Напомню, что основной энергетической характеристикой равновесного теплового излучения является плотность энергии . Мы ограничимся излучением абсолютно чёрного тела, т.е. такого тела, которое полностью поглощает электромагнитное излучение, падающее на тело.
    • Свойства операторов физических величин В квантовой механике используются линейные операторы, т.е. операторы, обладающие свойствами:   (15) где , - произвольные функции, а - произвольная постоянная. Оператор физической величины должен обладать еще одним свойством: он должен быть эрмитовым (самосопряженным).
    • Принцип причинности в квантовой механике. Временное уравнение Шредингера Согласно основному постулату квантовой механики, волновая функция   полностью описывает поведение системы. Это значит, что, зная волновую функцию в момент времени , можно определить волновую функцию в следующий момент времени . Нахождение волновой функции в момент времени  по известной волновой функции в предыдущий момент  составляет основную задачу квантовой динамики. Для решения этой задачи нужно знать временное уравнение, описывающее изменение во времени (временную эволюцию) волновой функции.
    • Туннельный эффект Рассмотрим потенциальный барьер высотой  в области , на который падают свободные частицы. Имеются три области – области I и III, в которых , и область II, в которой . Рассмотрим частицы с энергией . В классической механике так как  (- кинетическая энергия частицы). Значит, классическая частица не может проникнуть вглубь барьера. Точка  является точкой поворота: столкнувшись с барьером, частица отражается и летит в обратном направлении. Если , то классическая частица беспрепятственно проходит область II над барьером.
    • Движение микрочастицы в кулоновском поле Движение в поле центральной силы Рассмотрим микрочастицу в центрально-симметричном поле. Такое поле характеризуется тем, что в нём имеется характерная точка, называемая силовым центром, которая обладает следующим свойством: если силовой центр поместить в начале координат, то закон действия силы запишется в виде
    • Точная теория рассеяния. Фазы рассеянных волн и эффективное сечение Вернёмся к точному уравнению (3). Решение этого уравнения, отвечающее энергии , квадрату момента  и проекции момента , выражается через шаровую функцию: .
    • Физика – наука опытная: главная роль в установлении физических закономерностей принадлежит эксперименту. Эксперимент – система логически связанных целенаправленных действий. В физике в основе опытов лежат методы измерений величин и поэтому центральным является понятие методики проведения измерений.
    • Косвенные измерения
    • Лабораторная работа Исследование распределения результатов физических измерений Цель работы: определение параметров распределения результатов измерений и получение приближенного вида функции распределения.
    • Определение плотности твердых тел пикнометром Цель работы: освоение методов точного взвешивания на аналитических весах, определение плотности твердых тел и типа вещества.
    • Изучение динамики поступательного движения Цель работы: изучение законов динамики поступательного равномерного и равноускоренного движения, определение ускорения свободного падения.
    • Цель работы: экспериментальное изучение  уравнения динамики вращательного движения твердого тела относительно неподвижной оси и ознакомление с динамическим методом определения момента инерции твердого тела.
    • Цель работы: изучение деформации сдвига металлов.
    • Исследование зависимости деформации металлов от приложенного напряжения в области других деформаций.
    • Определение коэффициента вязкости жидкости и числа Рейнольдса методом падающего в жидкости шарика
    • Исследование упругих и тепловых свойств воздуха.
    • Цель работы: ознакомиться с понятием поверхностного натяжения жидкостей и двумя методами измерения коэффициента поверхностного натяжения.
    • Ознакомление с методом измерения показателя адиабаты для воздуха при адиабатическом процессе расширения и последующем изохорическом нагревании.
    • В цикле лабораторных работ по данной тематике исследователь знакомится с характеристиками электрического и магнитного полей и методами исследования этих полей, учится собирать электрические цепи, приобретает навыки работы с электроизмерительными приборами. В работах используются основные законы электромагнетизма.
    • Ознакомление с классическим методом измерения сопротивления при помощи мостовой схемы.
    • Изучение явления электропроводности и определение удельного сопротивления металла
    • Ознакомиться с явлением самоиндукции, изучить один из методов определения индуктивности катушки.
    • Изучить устройство, работу электронного осциллографа и генератора звуковой частоты и их применение к исследованию электрических колебаний звуковой частоты.
    • Получение стоячих электромагнитных волн, определение длины электромагнитной волны и скорости распространения.
    • Определение длины световой волны с помощью колец Ньютона
    • Изучение интерференционных полос равного наклона с помощью газового лазера
    • Определение длины световой волны при помощи дифракционной решетки Цель работы: изучение явления дифракции света и ознакомление с одним из методов определения длины световой волны при помощи дифракционной решетки.
    • Определение концентрации растворов при помощи поляриметра Цель работы: ознакомление с вращением плоскости колебаний света в оптически активных веществах и практическим применением данного явления для определения концентрации растворов.
    • Изучение закона Малюса Цель работы: изучение явления поляризации света, проверка закона Малюса.
    • Определить оптическую силу собирающей и рассеивающей линз
    • Определить показатель преломления жидкости рефрактометрическим методом
    • Изучить дифракцию лазерного света на стеклянной дифракционной решетке и на сетках с различными размерами ячеек.
    • Проверить справедливость выполнения закона Малюса поляризации света с помощью поляроидов. Определяется степень поляризации излучения полупроводникового лазера.
    • Знакомство с оптическими методами измерения температуры и определение постоянной Стефана – Больцмана и постоянной Планка.
    • Изучение явления внешнего фотоэффекта. Оборудование: вакуумный фотоэлемент, регулятор напряжения однофазный, вольтметр, микроамперметр, набор светофильтров.
    • Электромагнитное и электростатическое поле Вычислить площади фигур, ограниченных графиками функций . Задачи по курсу "Ядерная и нейтронная физика"
    • Волновой процесс. Характеристики волны. Волновое уравнение. Представим себе цепочку, состоящую из равноотстоящих друг от друга материальных точек, которые связаны пружинками и могут движения, деформируя пружинки. Если сместить от положения равновесия какую-либо частицу, то она начнет совершать колебательное движение и, взаимодействуя через пружинки, вовлечет в колебания соседние частицы. Все частицы будут совершать колебания, тождественные с исходной, но не одновременно, а запаздывая по фазе. Таким образом, колебания будут распространяться в пространстве.
    • Упругие волны. Скорость и энергия упругой волны. Рассмотренные нами волны в цепочке очень хорошо представляют сущность волновых процессов во всевозможных телах (стержнях, струнах и т.д.) или в сплошных средах (твердых, жидких и газообразных). В твердых телах возможны как продольные, так и поперечные волны. В жидких и газообразных, не имеющих упругости формы (модуль сдвига равен нулю) поперечные волны невозможны, возможны только продольные. При распространение волны в такой среде создаются чередующиеся сгущения и разрежения частиц, перемещающиеся в направлении распространения волны.
    • Электромагнитные волны. Волновое уравнение для электромагнитного поля.
    • Поляризация волн. Поляризация света. Способы поляризации. Как уже указывалось, электромагнитная волна является поперечной. Это значит, что векторы  и  всегда лежат в плоскости перпендикулярной направлению распространения волны (лучу). Однако, как именно в этой плоскости расположены эти векторы, зависит от источника волны.
    • Интерференция. Условия максимума и минимума интерференции. Интерференция - это явление наложения двух или нескольких волн, при котором результирующая интенсивность не равна сумме интенсивностей складываемых волн. Интерферировать могут волны любой физической природы. Мы рассмотрим это явление на примере электромагнитных волн.
    • Понятие когерентности. Временная и пространственная когерентность. Как уже отмечалось интерференционную картину можно наблюдать лишь при наложении когерентных волн. Обратим внимание на то, что в определении когерентных волн отмечено не существование, а наблюдение интерференции. Это означает, что наличие или отсутствие когерентности зависит не только от характеристики самих волн, но и от промежутка времени регистрации интенсивности. Одна и та же пара волн может быть когерентной при одном времени наблюдения и некогерентной при другом.
    • Явление дифракции. Зоны дифракции. Дифракция Френеля. Под дифракцией понимают явления, наблюдаемые при распространении волн в среде с резкими неоднородностями (края экранов, отверстия и др.), что связано с отклонениями от их прямолинейного распространения. Это приводит, в частности для световых волн, к огибанию волнами препятствий и проникновению света в область геометрической тени.
    • Дифракция Фраунгофера от щели. Дифракционная решетка. Голография
    • Тепловое излучение и люминесценция Излучение телами электромагнитных волн (свечение тел) может осуществляться за счет различных видов энергии. Самым распространенным является тепловое излучение, т. е. испускание электромагнитных волн за счет внутренней энергии тел. Все остальные виды свечения, возбуждаемые за счет любого вида энергии, кроме внутренней (тепловой), объединяются под общим названием «люминесценция».
    • Тормозное рентгеновское излучение. Фотоэффект. Формула Эйнштейна. Фотоны
    • Ядерная модель атома. Постулаты Бора. Спектральные закономерности. Изучение спектров излучения сыграло большую роль в познании строения атомов. В первую очередь это касается спектров, обусловленных излучением невзаимодействующих друг с другом атомов. Эти спектры состоят из отдельных узких спектральных линий, и их называют линейчатыми.
    • Волновые свойства частиц вещества. Гипотеза де-Бройля. Волны де-Бройля. Как было сказано ранее, свет (и вообще излучение) имеет двойственную природу: в одних явлениях (интерференция, дифракция и др.) свет проявляет себя как волны, в других явлениях с не меньшей убедительностью – как частицы. Это и побудило де-Бройля (в 1923 г.) высказать идею о том, что материальные частицы должны обладать и волновыми свойствами, т.е. распространить подобный корпускулярно-волновой дуализм на частицы с массой покоя, отличной от нуля.
    • Уравнение Шрёдингера. Квантование энергии и момента импульса. Атом водорода
    • Получение, свойства и применение некоторых полупроводниковых материалов Германий. Природное сырье в результате химической переработки переводится в четыреххлористый германий - GeCl4, который дальнейшей переработкой переводится в двуокись - GeO2. Двуокись германия восстанавливается водородом до порошкового германия, который, после травления, сплавляется в слитки. Слитки помещаются в графитовые тигли и подвергаются очистке методом зонной плавки, а затем из расплава очищенного германия вытягивается монокристалл.
    • Многоэлектронные атомы. Спин электрона. Распределение электронов по энергетическим уровням. В атоме водорода (или водородоподобном) энергия атома определяется только главным квантовым числом п и не зависит от двух других квантовых чисел. Это связано с тем, что электрическое поле ядра атома – кулоновское, т.е. обратно пропорционально квадрату расстояния.
    • Спонтанное и индуцированное излучение. Охарактеризуем квантовые процессы испускания и поглощения фотонов атомами. Фотоны испускаются только возбужденными атомами. Излучая фотон, атом теряет энергию, причем величина этой потери связана с частотой фотона соотношением (3.12.7). Если атом, по каким – либо причинам (например, из – за соударения с другим атомом) переходит в возбужденное состояние, это состояние является неустойчивым
    • Энергия молекулы. Молекулярные спектры. При образовании молекулы атомы утрачивают свою индивидуальность за счет формирования химических связей и их внешние электронные оболочки претерпевают сильные изменения. Электроны внутренних оболочек при объединении атомов в молекулу остаются в прежних состояниях. Для точного описания свойств молекулы ее удобнее рассматривать как систему из непрерывно колеблющихся ядер, а также электронов, которые быстро движутся вокруг ядер, создавая электронное облако.
    • Атомное ядро. Энергия связи. Ядерная энергия. Строение и важнейшие свойства атомных ядер. Ядром называется центральная часть атома, в которой сосредоточена практически вся масса атома и его положительный электрический заряд. Все атомные ядра состоят из элементарных частиц: протонов и нейтронов, которые считаются двумя зарядовыми состояниями одной частицы - нуклона.

    ВВЕДЕНИЕ В МЕТОДЫ ТЕОРИИ ФУНКЦИЙ ПРОСТРАНСТВЕННОГО КОМПЛЕКСНОГО ПЕРЕМЕННОГО

    Расчет электрических цепей Курсовая работа по ТОЭ

    • Электротехникой в широком смысле слова называется обширная область практического применения электромагнитных явлений. Широкое и разнообразное использование электрической энергии объясняется тем, что она имеет огромное преимущество перед другими формами энергии
    • Выбор типа выпрямителя. Так как однофазный мостовой двухполупериодный выпрямитель обладает рядом преимуществ по сравнению с другими схемами выпрямления, то его целесообразно выбрать в качестве схемы выпрямления.
    • Выбор типа сглаживающего фильтра. Так как ток нагрузки меньше 0,5 А, то в качестве фильтра необходимо взять емкостный фильтр.
    • Выбор типа трансформатора. Ввиду того, что маломощные трансформаторы стержневого типа с двумя катушками имеют лучшее охлаждение и требуют меньшего расхода меди ввиду меньшей средней длины витка и возможной большей плотности тока в обмотках, то я возьму именно этот тип
    • Расчет выпрямителей, работающих на нагрузку с емкостной реакцией. Аналитические формулы получим на примере однотактного трехфазного выпрямителя, схема которого и временные диаграммы, поясняющие его работу,
    • Действующее значение тока вторичной обмотки трансформатора
    • Расчет транформаторов малой мощности Трансформаторы малой мощности (ТММ) предназначены, в основном, для питания аппаратуры релейных схем, выпрямительных устройств, анодных цепей и цепей накала различных электронных приборов. Указанная нагрузка носит преобладающий активный характер, что учтено в данной методике
    • При мощностях от нескольких десятков до нескольких сотен вольт-ампер при частоте 50 Гц и до нескольких киловольт-ампер - при частоте 400 Гц наиболее перспективными являются стержневые двухкатушечные трансформаторы с ленточным магнитопроводом. Маломощные двухкатушечные трансформаторы стержневого типа имеют лучшее охлаждение и требуют меньшего расхода меди ввиду меньшей средней длины витка и возможной большей плотности тока в обмотках.
    • Определение тока холостого хода После того, как выбран магнитопровод трансформатора, нетрудно найти величины полных потерь в стали Рст , намагничиваю­щей мощности Qст, абсолютное и относительное значения тока холостого хода.
    • Расчет обмоток трансформатора заключается в определении числа витков и диаметра провода каждой из них
    • Следующим этапом является выбор марки провода
    • Определение температуры перегрева обмоток После того, как найдены геометрические размеры обмоток трансформатора, можно перейти к определению их рабочей температуры
    • Определение веса транформатора
    • Задание для расчета трансформатора
    • Предварительный расчет трансформатора. Расчет основных электрических величин и изоляционных расстояний.
    • Расчет обмотки НН
    • Расчет обмотки ВН
    • Расчет параметров короткого замыкания
    • Расчет магнитной системы. Определение размеров магнитной системы и массы стали.
    • Расчет потерь холостого хода
    • Тепловой расчет бака
    • Курсовая работа является завершающим этапом теоретического и практического изучения теоретических основ электротехники. Выполнение курсовой работы можно начинать только после глубокого изучения сущности электрических и магнитных явлений, приобретения умений и навыков в расчете электрических цепей постоянного и переменного тока, что невозможно без хорошей подготовки по физике и математике.
    • Методика расчёта линейных электрических цепей переменного тока
    • Эти два способа определения мощностей могут быть взаимоповерочными и при сходимости результатов указывать на правильность произведённых расчётов.
    • Метод активных и реактивных составляющих токов Этот метод предусматривает использование схемы замещения с последовательным соединением элементов (рис 2.1). В данном случае три параллельные ветви рассматриваются как три отдельные неразветвлённые цепи, подключенные к одному источнику с напряжением U. Поэтому в начале расчёта определяем полные сопротивления ветвей
    • Метод проводимостей основан на применении схемы замещения с параллельным соединением элементов
    • Расчёт сложных цепей переменного тока символическим методом
    • Характеристики и параметры цепей переменного тока в комплексной форме
    • Метод узловых и контурных уравнений
    • Метод контурных токов Намечаем в независимых контурах заданной цепи, как показано на рисунке 3.4, контурные токи IK1 и IK2 – некоторые расчётные комплексные величины, которые одинаковы для всех ветвей выбранных контуров. Направления контурных токов принимаются произвольно. Для определения контурных токов составляем два уравнения по второму закону Кирхгофа
    • Расчёт трёхфазной цепи при соединении приемника в звезду При расчёте несимметричной трехфазной цепи с потребителем, сое­динённым в звезду, схема может быть без нулевого провода или с нулевым проводом, который имеет комплексное сопротивление ZN. В обоих случаях система линейных и фазных напряжений генератора симметричны. Система линейных напряжений нагрузки останется также симметричной, так как линейные провода не обладают сопротивлением. Но система фазных напряжений нагрузки несимметрична из-за наличия напряжения смещения ней­трали UN. Трехфазная цепь при соединении приёмника в звезду представляет собой цепь с двумя узлами, расчёт подобных цепей наиболее целесообразно вести методом узлового напряжения
    • Расчёт трёхфазной цепи при соединении приёмника в звезду без нулевого провода. Если задана трехфазная цепь без нулевого провода, то формула для определения напряжения смещения нейтрали не должна включать проводимость нулевого провода
    • Расчёт неразветвлённой цепи с несинусоидальными напряжениями и токами
    • Требования к оформлению курсовой работы
    • Линейные электрические цепи
    • Электрическое напряжение 2-ой закон Кирхгофа
    • Энергетический баланс в электрической цепи Энергия от источника переносится приемнику электромагнитным полем со скоростью распространения волны. Для воздушных линий электропередачи  эта скорость близка к скорости света с=300000 км/с, для кабельных линий она чуть меньше . Таким образом, электромагнитная волна за единицу времени (1 сек) многократно пробегает путь от источника энергии до приемника.
    • Теоремы и методы расчета сложных резистивных цепей Узлом электрической цепи (схемы) называется точка, в которой сходятся не менее трех ветвей. Ветвью электрической цепи (схемы) называется участок, состоящий из последовательно включенных элементов, расположенных между двумя смежными узлами. Сложной называется электрическая цепь (схема), содержащая не менее двух узлов, не менее трех ветвей и не менее двух  источников энергии в разных ветвях.
    • Взаимное преобразование схем звезда-треугольник возникает при свертке сложных схем.
    • Метод законов Кирхгофа 1-й закон Кирхгофа: алгебраическая сумма токов ветвей в узле схемы равна нулю (). 2-й закон Кирхгофа: алгебраическая сумма падений напряжений в произвольном контуре схемы равна алгебраической сумме ЭДС ().
    • Метод контурных токов Теоретическая база метода контурных токов – 2-ой закон Кирхгофа в сочетании с принципом наложения. Предполагают, что в каждом элементарном контуре-ячейке схемы протекает «свой» контурный ток Ik, а действительные токи ветвей получаются по принципу наложения контурных токов как их алгебраические суммы. В качестве неизвестных величин, подлежащих определению, в данном методе выступают контурные токи. Общее число неизвестных составляет m-(n-1).
    • Метод узловых потенциалов Теоретическая база метода узловых потенциалов – 1-ый закон Кирхгофа в сочетании с потенциальными уравнениями ветвей. В этом методе потенциал одного из узлов схемы принимают равным нулю, а потенциалы остальных (n-1) узлов считают неизвестными, подлежащими определению. Общее число неизвестных составляет (n-1).
    • Метод двух узлов является частным случаем метода узловых потенциалов при числе узлов в схеме n = 2
    • Теорема о взаимности Выделим из сложной схемы две произвольные ветви “m” и “n”, в одной из которых включен источник ЭДС E (в ветви m). Теорема о взаимности гласит, что если источник ЭДС E, включенный в ветви “m”, вызывает в ветви “n” частичный ток I , то такой же источник ЭДС E, включенный в ветвь “n”, вызовет в ветви “m” такой же частичный ток I
    • Теорема о линейных отношениях Формулировка теоремы: если в произвольной к-ой ветви сложной схемы изменяется ЭДС источника Ek или сопротивление резистора Rk, то параметры режима в двух других ветвях (например, 1 и 2, I1 и I2, U1 и U2, U1 и I2, I1 и U2 ) изменяются так, что между ними сохраняется линейная зависимость (и т.д.).
    • Пример. В схеме рис. 28 с заданными параметрами элементов (E1=100 В; E2=20 В; E3=30 В, E4=10 В; R1=R2=40 Ом; R3=R4=20 Ом; R5=R6=10 Ом) определить ток в выделенной ветви I6 методом эквивалентного генератора.
    • Электрические цепи переменного синусоидального тока Переменный ток (напряжение) и характеризующие его величины Переменным называется ток i(t) [напряжение u(t)], периодически изменяющийся во времени по произвольному закону. В электроэнергетике понятие ’’переменный’’ употребляют в более узком смысле, а именно: под переменным понимают ток (напряжение), изменяющийся во времени по синусоидальному закону:
    • Среднее и действующее значения переменного тока и напряжения Среднее значение Fср произвольной функции времени f(t) за интервал времени Т определяется по формуле :
    • Векторные диаграммы переменных токов и напряжений Из курса математики известно, что любую синусоидальную функцию времени, например i(t)=Imsin(wt+a), можно изобразить вращающимся вектором при соблюдении следующих условий : а) длина вектора в масштабе равна амплитуде функции Im ; б) начальное положение вектора при t = 0 определяется начальной фазой a ; в) вектор равномерно вращается с угловой скоростью w, равной угловой частоте функци
    • Теоретические основы комплексного метода расчета цепей переменного тока Из курса математики известно, что комплексное число Z может быть представлено в следующих трех формах: показательной, тригонометрической и алгебраической
    • Мощность переменного тока В сложной электрической цепи, состоящей из разнородных элементов R, L, C, одновременно происходят следующие физические процессы
    • Переменные ток в однородных идеальных элементах Существует три типа идеальных схемных элементов: резистор R, катушка L и конденсатор C. Рассмотрим процессы в цепи с каждым из названных элементов в отдельности.
    • Электрическая цепь с последовательным соединением элементов R, L и C
    • Электрическая цепь с параллельным соединением элементов R, L и С
    • Активные и реактивные составляющие токов и напряжений При расчете электрических цепей переменного тока реальные элементы цепи (приемники, источники) заменяются эквивалентными схемами замещения, состоящими из комбинации идеальных схемных элементов R, L и С.
    • Максимум мощности приемника имеет место при равенстве активных сопротивлений приемника и источника
    • Резонанс в электрических цепях Определение резонанса В электрической цепи, содержащей катушки индуктивности L и конденсаторы C, возможны свободные гармонические колебания энергии между магнитным полем катушки   и электрическим полем конденсатора . Угловая частота этих колебаний wo, называемых свободными или собственными, определяется структурой цепи и параметрами ее отдельных элементов R, L ,C.
    • Резонанс в цепи с параллельным соединением источника энергии и реактивных элементов L и C получил название резонанса токов
    • Резонанс в сложных схемах Схемы замещения реальных электрических цепей могут существенно отличаться от рассмотренных выше простейших последовательной или параллельной схем. Хотя условие резонансного режима в общем виде [ Im(Zвх)=0 и Im(Yвх)=0 ] для любой схемы сохраняется, однако конкретное содержание этих уравнений будет определяться структурой схемы замещения.
    • Магнитносвязанные электрические цепи
    • Последовательное соединение магнитносвязанных катушек
    • Сложная цепь с магнитносвязанными катушками В сложной цепи магнитосвязанные катушки могут находиться в любых ветвях. Так как направления токов в ветвях схемы выбираются  произвольно, то токи в ветвях, содержащих магнитносвязанные катушки, могут быть направлены как согласно, так и встречно.
    • Линейный (без сердечника) трансформатор Схема линейного трансформатора состоит из двух магнитносвязанных катушек, к одной из которых (первичной) подключается источник ЭДС Е, а ко второй (вторичной) - нагрузка ZН
    • Круговая диаграмма тока и напряжений для элементов последовательной цепи
    • Топологические методы расчета электрических цепей
    • Уравнения Ома и Кирхгофа в матричной форме Если в исследуемой сложной схеме содержатся параллельно включенные ветви, то для составления матриц соединений такие ветви необходимо заменить (объединить) одной эквивалентной ветвью.
    • Контурные уравнения в матричной форме Вводим понятия контурных токов Iк . Контурные токи замыкаются по контурам-ячейкам графа, именуются по имени хорды, их направление совпадает с направлением хорды. Столбовая матрица контурных токов
    • Электрические цепи трехфазного тока. Трехфазная системаь Многофазной системой называется совокупность, состоящая из ”n” отдельных одинаковых электрических цепей или электрических схем, режимные параметры в которых (е, u, i) сдвинуты во времени на равные отрезки  или по фазе .
    • Достоинства трехфазной системы: Передача энергии от генератора к потребителям трехфазным током наиболее выгодна экономически, чем при любом другом числе фаз. Например, по сравнению с двухпроводной системой достигается экономия проводов в два раза (3 провода вместо 6), соответственно уменьшаются потери энергии в проводах линии.
    • Способы соединения фаз трехфазных приемников. Приемники трехфазного тока могут подключаться к генератору по двум схемам – звезды () и треугольника (). Как известно, на выходе трехфазного генератора получаются два напряжение (линейное и фазное), отличающиеся в Uл/Uф = раз. С другой стороны каждый приёмник энергии рассчитан на работу при определенном напряжении, которое называется номинальным. Схема соединения фаз приемника должна обеспечить подключение его фаз номинальное фазное напряжение. Таким образом, выбор схемы соединения фаз трехфазного приемника зависит от соотношения номинальных напряжений приемника и генератора (сети).
    • Схема треугольника применяется в том случае, если номинальное фазное напряжение приемника соответствует (равно) линейному напряжению генератора. При соединении в треугольник конец каждой фазы соединяется с началом последующей, а точки соединения (вершины треугольника) подключаются к линейным выводам трехфазного генератора  А, В, С линейными проводами
    • Расчет сложных трехфазных цепей Сложная трехфазная цепь, например, объединенная энергосистема, может содержать большое число трехфазных генераторов, линий электропередачи, приемников трехфазной энергии. Схема такой цепи представляет собой типичный пример сложной цепи переменного тока. Установившейся режим в такой схеме может быть описан системой алгебраических уравнений с комплексными коэффициентами, составленных по одному из методов расчета сложных цепей (метод законов Кирхгофа, метод контурных токов, метод узловых потенциалов). Наиболее рациональным методом расчета таких трехфазных цепей является метод узловых потенциалов, при этом составление уравнений и их решение производится в матричной форме.
    • Мощность трехфазной цепи и способы ее измерения Активная и реактивная мощности трехфазной цепи, как для любой сложной цепи, равны суммам соответствующих мощностей отдельных фаз:
    • Вращающееся магнитное поле Одним из важнейших достоинств трехфазной системы является возможность получения с ее помощью кругового вращающегося магнитного поля, которое лежит в основе работы трехфазных машин (генераторов и двигателей).
    • Теоретические основы метода симметричных составляющих Метод симметричных составляющих применяется для расчета трехфазных цепей в несимметричных режимах. Несимметричные режимы в энергосистеме возникают при различных видах коротких замыканий. Расчет токов коротких замыканий – важная инженерная задача в электроэнергетике, которая решается методом симметричных составляющих.
    • Расчет режима симметричной трехфазной нагрузки при несимметричном напряжении Пусть к симметричному трехфазному приемнику, например электродвигателю, приложена несимметричная система напряжений UA, UB, UC. Для получения общих закономерностей введем в схему нулевой провод с сопротивлением ZN.
    • Расчет токов коротких замыканий в энергосистеме методом симметричных составляющих. В результате различного вида коротких замыканий в сложной энергосистеме возникает несимметричный режим. Расчет токов коротких замыканий в различных точках энергосистемы является важной инженерной задачей. Также расчеты выполняются методом симметричных составляющих.
    • Фильтры симметричных составляющих Фильтрами симметричных составляющих называются технические устройства или схемы, служащие для выделения соответствующих составляющих токов или напряжений из несимметричной трёхфазной системы векторов.
    • Курсовая работа по ТОЭ Анализ линейных электрических цепей выполняется курсантами в первом семестре и в дальнейшем защищается на протяжении второго семестра на практических занятиях и консультациях. Она состоит из трех частей и фактически отражает все этапы лекционного материала первого семестра.
    • Расчет методом узловых потенциалов Будем рассматривать установившийся режим в линейной цепи при гармоническом воздействии. Тогда справедлив символический метод расчета, применительно к схеме, рис.6. Для чего подключаем узел с номером «0» к корпусу и считаем его опорным с потенциалом равным нулю. Тогда разность потенциалов между опорным узлом и каким – либо другим дает искомое напряжение.
    • Расчет методом эквивалентного генератора В соответствии с заданием рассчитаем ток в пятой ветви. Крайние точки в пятой ветви обозначим буквами «а» и «b». Удаляем из электрической цепи пятую ветвь вместе с источником тока, подсоединенного параллельно ей.
    • Расчет электрической цепи с взваимоиндуктивными связи методом контурных токов
    • Расчет методом узловых потенциалов
    • Расчет методом контурных токов
    • Переходные процессы в линейных цепях Современные радиотехнические системы часто включают в себя комплекс достаточно сложных электрических цепей, среди которых разнообразные линейные цепи. В зависимости от характера воздействующих э.д.с. и назначения линейных цепей в них могут протекать самые различные процессы. Поэтому необходимо иметь ясное представление о таких процессах и уметь рассчитывать их для определенной цепи при заданном воздействии. Это относится к задачам анализа процессов в цепях. Среди них все больший интерес вызывают задачи, связанные с процессами в различных импульсных системах.
    • Анализ переходных процессов методом решения линейных дифференциальных уравнений
    • Разряд конденсатора на активное сопротивление
    • Разряд конденсатора в цепи .
    • Воздействие постоянного напряжения на L,C,R цепь
    • Воздействие гармонической э.д.с, на колебательный контур

    Информатика, Операционные системы

    Информационные ресурсы локальных сетей

    • Сервисы прикладного назначения Протоколы и сервисы электронной почты (POP, UUCP, SMTP)
      Если DNS и DHCP были сервисами системного назначения и используются для систем маршрутизации и доставки пакетов (т.е. обычный пользователь на локальной машине никогда не сталкивается с сервисами такого рода прямо), то электронная почта является, прежде всего, пользовательской системой, ориентированных на обмен информацией между людьми, хотя она успешно используется и для автоматического обмена данными между удаленными компьютерами и для некоторых вариантов специального почтового обмена, таких например, как "новости" – "news".
    • Протокол и сервис удаленного доступа Telnet Аналогично FTP, Telnet, тоже, когда-то была всего лишь командой OC UNIX, однако, в виду ее популярности и удобства, она распространилась в виде отдельного приложения на все существующие сетевые ОС и представляет сервисную систему имеющую свой прикладной протокол. Изначально, команда использовалась для удаленного входа в систему и позволяла описать сетевое взаимодействие, пригодное для организации текстового терминала, без привязки к конкретным его параметрам, таким как кодовые раскладки и таблицы символов, а также перечня команд.
    • Методы маршрутизации информационных потоков Маршрутизаторы Довольно часто в компьютерной литературе дается следующее обобщенное определение маршрутизатора: маршрутизатор — это устройство сетевого уровня эталонной модели OSI, использующее одну или более метрик для определения оптимального пути передачи сетевого трафика на основании информации сетевого уровня. Из этого определения вытекает, что маршрутизатор, прежде всего, необходим для определения дальнейшего пути данных, посланных в большую и сложную сеть.
    • Коммутация пакетов в виртуальных каналах Тот способ, с помощью которого данные, речевая и видеоинформация передаются из одного пункта в другой, зависит от типа используемого вами средства. Сетевые и телефонные средства могут быть ориентированными на подключения или нет. Ориентированные на подключения средства предусматривают выделенную связь между двумя системами. Это физическая линия, которую вы можете установить с помощью телефонного центра коммутации перед началом передачи данных. Ориентированными на подключение являются линии с вызовом по номеру и арендуемые линии.
    • Корпоративные информационные системы. С некоторым опозданием, по сравнению с Западом, в Беларуси медленно, но верно начинают понимать всю важность комплексного подхода в автоматизации предприятий и организаций
    • Развитие информационного ресурса предприятия предполагает использование методов и средств взаимодействия на уровне глобальных компьютерных (информационных) сетей.
    • Организация данных в корпоративных системах. Корпоративные базы данных. Основные требования к базам дан­ных в рамках корпоративных информационных систем. Масштабируемость и другие характеристики корпоратив­ных баз данных.
    • Интеллектуальный анализ данных. ИАД (Data Mining) - это процесс поддержки принятия решений, основанный на поиске в данных скрытых закономерностей (шаблонов информации).
    • Корпоративная информационная система (КИС) является подсистемой Системы управления предприятием и бизнеса. КИС основывается на обработке объективных данных, характеризующих состояние производственных и бизнес процессов.
    • Технические средства автоматизации производственных процессов. В АСУ ТП объектами управления являются технологические процессы, представляющие совокупность способов и средств проведения конкретных производственных операций по изготовлению промышленной продукции.
    • Администрирование компьютерных сетей. Различают сети с выделенным сервером и одноранговые сети. Одноранговые сети обычно объединяют небольшое количество компьютеров и служат для разделения файлов и совместного использования периферийных устройств (модем, сканер, принтер и т.д.).
    • СУБД и структурные решения в корпоративных системах. Попытаемся выделить основные характеристики классической корпорации.
    • Стандартизация и сертификация прикладного программного обеспечения. В современных условиях, условиях жесткой конкуренции, очень важно гарантировать высокое качество процесса конструирования ПО. Такую гарантию дает сертификат качества процесса, подтверждающий его соответствие принятым международным стандартам.
    • Этапы развития компьютерной преступности. Компьютерные преступления (computer crime) - это преступления, совершенные с использованием компьютерной информации. При этом, компьютерная информация является предметом и (или) средством совершения преступления.

    Физические каналы передачи данных в локальных сетях

    • Стандарты кабелей Как ранее было сказано, распределенные вычислительные сети могут быть построены на различных физических каналах передачи данных: проводные сети, кабельные сети, построенные на коаксиальном кабеле, витой паре и оптоволокне; передача данных по радиоканалам различных диапазонов, инфракрасные сети. К настоящему наибольшее распространение получили и наибольшими темпами развиваются именно кабельные сети.
    • Цифровое кодирование При цифровом кодировании дискретной информации применяют потенциальные и импульсные коды. В потенциальных кодах для представления логических единиц и нулей используется только значение потенциала сигнала, а его перепады, формирующие законченные импульсы, во внимание не принимаются. Импульсные коды позволяют представить двоичные данные либо импульсами определенной полярности, либо частью импульса - перепадом потенциала определенного направления.
    • Обнаружение и коррекция ошибок Канальный уровень должен обнаруживать ошибки передачи данных, связанные с искажением бит в принятом кадре данных или с потерей кадра, и по возможности их корректировать. Большая часть протоколов канального уровня выполняет только первую задачу - обнаружение ошибок, считая, что корректировать ошибки, то есть повторно передавать данные, содержавшие искаженную информацию, должны протоколы верхних уровней
    • Общая характеристика протоколов локальных сетей При организации взаимодействия узлов в локальных сетях основная роль отводится протоколу канального уровня. Однако для того, чтобы канальный уровень мог справиться с этой задачей, структура локальных сетей должна быть вполне определенной, так, например, наиболее популярный протокол канального уровня - Ethernet - рассчитан на параллельное подключение всех узлов сети к общей для них шине - отрезку коаксиального кабеля или иерархической древовидной структуре сегментов, образованных повторителями. Протокол Token Ring также рассчитан на вполне определенную конфигурацию - соединение компьютеров в виде логического кольца.

    Машиностроительное черчение

    • Комплексный чертеж на примере изображения точки Геометрический аппарат проецирования и метод Г. Монжа получения обратимых изображений
    • Основные геометрические фигуры Способы задания геометрических фигур. Два способа задания геометрических фигур: кинематический и статический. Кинематический способ основан на перемещении в пространстве точки или образующей линии по определенному закону. Закон перемещения задается направляющими элементами: точками, линиями или плоскостями. Совокупность образующей и направляющих называется определителем геометрической фигуры.
    • Взаимопринадлежность геометрических фигур Общие понятия взаимопринадлежности Элементарная (основная) задача на принадлежность, без которой бесполезно пытаться решать любую задачу на ту же тему, - это задача на принадлежность точки к плоскости или к любой криволинейной поверхности
    • Метод проецирующих секущих плоскостей
    • Параллельность прямых и плоскостей Прямая параллельна плоскости, если она параллельна какой-либо прямой этой плоскости.
    • Метод центрального проецирования
    • Положение плоскости относительно плоскостей проекций Любая, произвольно взятая в пространстве, плоскость может занимать общее или частное положение. Плоскостью общего положения называется плоскость, которая не перпендикулярна ни к одной из плоскостей проекций
    • Метод плоскопараллельного перемещения Применение метода вращения вокруг проецирующей оси при преобразовании нередко приводит к наложению на исходную новых проекций. При этом чтение чертежа представляет определенные сложности. Избавиться от указанного недостатка позволяет метод плоскопараллельного перемещения проекций фигуры
    • Сечение многогранников плоскостью Многогранник есть геометрическое тело, ограниченное плоскими многоугольниками (гранями), пересекающимися по прямым линиям (рёбрам). Фигура сечения многогранника есть плоский многоугольник, сторонами которого являются прямые пересечения заданной плоскости с плоскостями граней, а вершинами -— точки пересечения рёбер многогранника с заданной плоскостью.
    • Перевод секущей прямой в частное положение При пересечении поверхности сферы плоскостью в сечении получается окружность, которая проецируется на плоскости проекции в виде эллипсов или прямой и эллипса (если секущая плоскость - проецирующая).
    • Классификация разрезов В зависимости от положения секущей плоскости относительно горизонтальной плоскости проекций разрезы подразделяются на горизонтальные, вертикальные и наклонные.
    • Аксонометрические проекции Аксонометрические изображения деталей применяются в качестве вспомогательных в случаях, когда от чертежа требуется поясняющее наглядное изображение формы детали. Аксонометрической проекцией называется проекция, полученная путём проецирования заданного предмета вместе с координатной системой, к которой он отнесён, параллельным пучком лучей на некоторую плоскость П

    Ядерные топливные циклы

    • Все способы производства топлива для ядерных реакторов, подготовки его к использованию и утилизации отработанного топлива вместе взятые и составляют то, что называют топливным циклом. Уже сам термин «топливный цикл» предполагает, что отработанное ядерной топливо может повторно использоваться на ядерных установках в свежих тепловыделяющих элементах после специальной обработки. Таким образом, ядерный топливный цикл описывает путь, по которому топливо попадает в ядерный реактор, и по которому его покидает.
    • Завершающая часть ядерного топливного цикла (Nuclear fuel cycle back-end) - деятельность, включающая транспортировку, хранение, переработку отработавшего ядерного топлива, обращение с радиоактивными отходами и их захоронение.
    • Торий-плутонивый цикл В настоящее время в стадии разработки находится торий-плутониевый цикл (точнее 322Th-U- Pu цикл). Основа нового топлива - торий и оружейный плутоний, смесь которых поставляется в виде топливных сборок на обычные ядерные реакторы, где она и сжигается, попутно производя электроэнергию
    • Методы разделения изотопов Чаще всего разделение изотопов на отдельные изотопы сводится к выделению из смеси одного из изотопных веществ или просто к концентрированию этого вещества в смеси.
    • Для разделения урана в используются следующие технологии: электромагнитное разделение, газовая диффузия, жидкостная термодиффузия, газовое центрифугирование, аэродинамическая сепарация. Определенного внимания заслуживают следующие, пока промышленно неприменяемые методы: испарение с использованием лазера и химическое разделение
    • Транспортировка радиоактивных веществ (РВ) и ядерных делящихся материалов (ЯДМ) - важный компонент ядерного топливного цикла.
    • Радиохимические заводы России